If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+96x-72=0
a = 18; b = 96; c = -72;
Δ = b2-4ac
Δ = 962-4·18·(-72)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-120}{2*18}=\frac{-216}{36} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+120}{2*18}=\frac{24}{36} =2/3 $
| -3w-3(8w+6)=225 | | 13+2m=5m-2 | | 2x-1+x/2=-1+4x+5 | | 21+2y=60 | | 14(a+2)=168a= | | n+4=-7n+12 | | -.3(.4x+.3)+.4(.6x+.1)=4.3 | | 25=-3+4x | | 2x-1+x/2=-14x+5 | | r+6(1+r)=20 | | 3n-12=-(1n+6) | | -19+21=-9z+8z | | 1/2=q+2/5 | | 9(a+6)=135a= | | 3t^2-20t-9=0 | | 10-2x+40-22x=180 | | 10-2x=40-22x | | r=6(8) | | X+4-3x=72 | | -34=-w-(-6w-1) | | 66=h-11 | | F(x)=x+2/14 | | 2x+x-11=3-7x=15 | | v/5-14=22 | | 1/4x+28=x | | (3/4)x+8=2x-17 | | 15+2u=49 | | g=8(4) | | 3/8(x)-1/9=1/2 | | 13/17=x/30 | | 15=u/5-7 | | -1+25(5-6v)=-63 |